Séance 5

Les paramètres statistiques de dispersion

Objectifs de la séance

Une série numérique peut être résumée par deux paramètres statistiques :

- le **centre** d'une distribution des valeurs, représentant leur tendance d'ensemble;
- La dispersion des valeurs, représentant leur variabilité.

➤ ÉTENDUE OU AMPLITUDE (RANGE)

<u>**Définition</u>**: Différence entre la plus grande et la plus petite des observations d'une série statistique*</u>

* : suppose que la variable soit quantitative ou pseudo-quantitative

Notation: ω

Calcul:

$$\omega = \mathbf{x}_{\text{max}} - \mathbf{x}_{\text{min}}$$

<u>Limite</u>: la dispersion est mesurée en prenant en compte seulement les deux valeurs extrêmes et non pas toutes les valeurs de la distribution

Âge (x _i)	Effectifs (n _i)	
20	5	
24	2	
25	3	
28	2	
36	2	
40	4	
51	1	
60	2	
Total	21	

$$\omega$$
 = 60-20= 40 ans

> VARIANCE (VARIANCE)

<u>Définition</u>: Moyenne des carrés des écarts à la moyenne. Plus cette valeur est importante et plus la dispersion est importante.

Notation: Var ou σ^2

Calcul:

Sur la population entière

Sur un tableau statistique complet

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \overline{x} \right)^2$$

Sur un échantillon
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

Sur un tableau statistique condensé

$$\sigma^2 = \frac{1}{N} \sum_{j=1}^{j=k} \left(c_j - \overline{x} \right)^2 n_j$$

$$\sigma^{2} = \frac{1}{n-1} \sum_{j=1}^{j=k} \left(c_{j} - \overline{x} \right)^{2} n_{j}$$

> VARIANCE (VARIANCE)

Calcul sur un tableau statistique complet

		•	
	Salaires		
Salariés	mensuels		
	nets (X _i)	$(x_i-\overline{x})^2$	
Carrière	1300	(1300-2465)2= 1357780	
Claude	1350	(1350-2465) ² =1243756	
Steen 1350		1243756	
Pauli	1350	1243756	
Douglas 1500		931685	
Marteau 1500		931685	
Vasquez	1500	931685	
Jefferson	1600	748637	
Bistouri	1700	585589	
Garisson	1800	442542	
Ndione	1820	416332	
Birhut	1900	319494	
Pertus	2000	216446	
Muller	2000	216446	
Dupond	2400	4256	
Bryan	2400	4256	
Toto	4500	4140256	
Martin	4900	5928066	
Norma	4900	5928066	
Urena	5000	6425018	
Sanchez	5000	6425018	
		39684524	

Sur la population entière σ²= 39684524/21= 1889739

Sur un échantillon σ²= 39684524/(21-1)= 1984226

ECART-TYPE (STANDARD DEVIATION)

<u>Définition</u>: Racine carrée (positive) de la variance

Notation: σ

 σ = moyenne quadratique des écarts à la moyenne.

O, comme la moyenne, est exprimé dans la même unité que la variable d'origine.

Calcul:
$$\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2}$$

> COEFFICIENT DE VARIATION (COEFFICIENT OF VARIATION)

Définition: écart-type divisé par la moyenne

Notation: c_v

 c_v est sans dimension (unité). Ainsi est-il possible de comparer les C.V. de variables exprimées dans des unités différentes

Calcul:
$$c_v = \frac{\sigma}{\mu}$$

> COEFFICIENT DE VARIATION (COEFFICIENT OF VARIATION)

Définition: écart-type divisé par la moyenne

Notation: c_v

 c_v est sans dimension (uni c_v) Aınsi est-il possible de comparer les C.V. de variables exprimées dans des unités différentes

Calcul:
$$c_v = \frac{\sigma}{\mu}$$

!!! : Quand la moyenne tend vers zéro, le coefficient de variation tend vers l'infini

>QUARTILES (Q1; Q2; Q3)

<u>**Définition**</u>: Les 3 valeurs (Q1; Q2; Q3) divisant la série triée en 4 parties d'effectifs égaux tel que chaque partie représente ¼ de l'échantillon de la population;

```
25 % des valeurs <= Q1
```

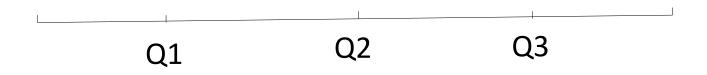
25 % comprises entre Q1 et Q2

25 % entre Q2 et Q3

et 25 % supérieures à Q3.

L'intervalle interquartile est égal à (Q3-Q1)

=> 50 % des individus sont compris dans cet intervalle



QUARTILES

Calcul sur un tableau statistique complet

Salariés	Salaires mensuels nets (X)		
Carrière	1300		
Claude	1350		
Steen	1350		
Pauli	1350		
Douglas	1500		
Marteau	1500		
Vasquez	1500		
Jefferson	1600		
Bistouri	1700		
Garisson	1800		
Ndione	1820		
Birhut	1900		
Pertus	2000		
Muller	2000		
Dupond	2400		
Bryan	2400		
Toto	4500		
Martin	4900		
Norma	4900		
Urena	5000		
Sanchez	5000		

- 1ere étape, on classe les individus par ordre croissant
- 2ème étape, on cherche le rang en calculant : n x F
 n désigne le nombre d'individus et F la fréquence cumulée recherchée (0,25 pour Q1 et 0,75 pour Q3)

Exemple pour Q1

21x0,25 = 5,25

Le premier quartile est le terme de rang 6

Q1=1500

Exemple pour Q3

21x0.75 = 15.75

Le troisième quartile est le terme de rang 16

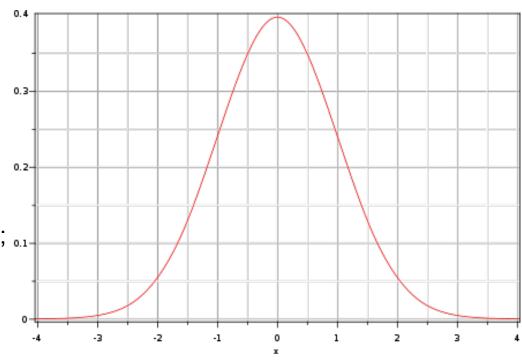
Q3=2400

▶ DISTRIBUTION GAUSSIENNE et LOI NORMALE

En théorie des probabilités et en statistique, la loi normale est l'une des lois de probabilité les plus adaptées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires.

Une variable répondant à la loi normale présente une distribution caractéristique. Sur l'histogramme on note :

- la forme en cloche;
- la proximité mode/moyenne/médiane; 0.1-
- des conditions relative à dispersion qui s'expriment en fonction de la Moyenne et de la médiane.



$$\mathbb{P}(\mu-\sigma \leq x \leq \mu+\sigma) pprox 0.6827 \ \mathbb{P}(\mu-2\sigma \leq x \leq \mu+2\sigma) pprox 0.9545 \ \mathbb{P}(\mu-3\sigma \leq x \leq \mu+3\sigma) pprox 0.9973$$

			Population ou
	Nom	PIB/Hab	Effectifs (nj)
1	Moldavle	3698	358328
2	Ukraine	7618	44291413
3	Bosnie-Herzégovine	8307	387164
4	Albanie	8850	3020209
5	Macédoine	10790	209171
6	Serble	11161	720976
7	Monténégro	11429	65003
8	Roumanie	12918	2172987
9	Bulgarle	15105	692471
10	Blélorussie	15654	960805
11	Croatie	17649	447053
12	Russie	17920	14247027
13	Lettonie	17952	216516
14	Chypre	18440	117245
15	Lituanie	19234	350573
16	Hongrie	19820	
17	Pologne	21228	3834627
18	Portugal	22499	1081383
19	Estonie	23801	125792
20	Slovaquie	24506	544358
21	Grèce	24788	1077555
22		26874	
23	Malte	27771	41265
24	Slovénie	28416	
25	Espagne	29096	
26	tale	29264	
27	France	34305	6625901
28	Andorre	37012	8545
29	Finlande	37105	
30		37105	
31	Royaume-Uni	37306	
32	Danemark Irlande	39398	556907 483276
33		39390	-
$\overline{}$	Allemagne		8099668
34	Saint-Marin	39888	
35	Belgique	40357	1044936
36	Suède	40499	972380
37	Pays-Bas	41256	1687735
38	blande	41311	31735
39	Autriche	43901	822306
40	Sulsse	45934	
41	Norvège	54820	
42	Luxembourg	81952	52067
43	Liechtenstein	85761	3731
44	Monaco	188410	3050

Sur l'exemple « PIB/Hab des pays d'Europe », sans prendre en compte la population :

1/ Calculer l'étendue, la variance, l'écart-type et le coefficient de variation

2/ Calculer les quartiles et l'intervalle interquartile

3/ Quel est le % d'individus compris dans les intervalles suivants :

$$Q3 - Q1$$

$$\mathbb{P}(\mu-\sigma\leq x\leq \mu+\sigma)pprox 0.6827 \ \mathbb{P}(\mu-2\sigma\leq x\leq \mu+2\sigma)pprox 0.9545 \ \mathbb{P}(\mu-3\sigma\leq x\leq \mu+3\sigma)pprox 0.9973$$

4/ La distribution est-elle gaussienne?