
Multi-domain spectral methods for the computation of
fractional derivatives

Fractional derivatives have seen in recent years an increase in impor-
tance in applications since they allow a simple modelling of nonlocal
effects, see for instance [1, 2, 3] and references therein. Fractional
derivatives of order s, 0 < s < 1 are most easily defined via their
Fourier transform

∂̂sxu = |ξ|sû,
where û is the Fourier transform of u and where ξ is the Fourier variable
dual to x. Alternatively they can be defined as

∂sxu ∝
∫ x

−∞

u(y)

(x− y)s
dy −

∫ x

∞

u(y)

(x− y)s
dy.

The problem in the numerical computation of fractional derivatives is
the slow algebraic decrease of the fundamental solutions of equations
as in [1] which makes the use of Fourier methods inefficient.

The task is to write a code to implement a multidomain spectral
method to compute the above integrals. The idea is to separate the real
line into several intervals which are all mapped to [−1, 1]. On each of
them a substitution is performed to obtain a smooth integrand on the
respective interval. The integrals are computed via Clenshaw-Curtis
integration, see e.g. [4], which is both efficient and of spectral accuracy.
The resulting code will be applied to the numerical construction of the
soliton solutions of [1].
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