

Master

Physics, Photonics

& Nanotechnology

MENTION PHYSIQUE FONDAMENTALE ET APPLICATIONS

RESPONSABLES DU DIPLOME :

- Prof. Claude LEROY
- Prof. Benoît CLUZEL
- Dr. Aurélien COILLET

Secrétariat Pédagogique : Mme Marielle COUTAREL <u>marielle.coutarel@u-bourgogne.fr</u>

2nd Year

UE 1	Quantum Technologies
	S. Guérin, D. Sugny, F. Holweck, C. Latune
	The aim of this course is to present the fundamental concepts and
5 ECTS	applications of quantum technologies such as quantum computation and
44 H	cryptography, quantum optics, quantum measurement and quantum
	simulation. Aspects common to these applications such as quantum
	control, quantum thermodynamics, quantum entanglement and the basic
	concepts of quantum information are described. Particular attention is paid
	to the theoretical notions required for the practical work on quantum
	technologies carried out in the E.U. Practicals 2.

UE 2	Ultrafast Optics
	O. Faucher, E. Hertz
	The aim of this course is to present the fundamental concepts and
	applications of femtosecond laser pulses. In the first part, the linear and
	non-linear optical phenomena encountered during the propagation of an
5 ECTS	intense ultra-short laser pulse are described. Mode-locking and pulse
40 H	compression techniques are then discussed. The second part deals with
	the modelling of radiation-matter interaction processes in ultrafast optics;
	pump-probe measurements, terahertz radiation production, quantum
	beats, harmonic generation, Raman effect, photon echo. The issues
	associated with the metrology of ultra-short pulses, and in particular their
	temporal characterisation, are dealt with in the third part. The last part
	deals with the various techniques for establishing temporal shaping of
	femtosecond laser pulses, ranging from simple methods with few control
	parameters (stretcher, compressor) to the most elaborate shapers
	allowing extensive control of pulse shape. /Knowledge: Understand the
	techniques for producing, characterizing, and tailoring an ultra-short laser
	pulse. Know how to model the physical processes resulting from the
	interaction of a laser pulse with a quantum system using the Bloch Optics
	equations. Understand the principle of most common temporal
	characterization techniques (autocorrelation, FROG, SPIDER, etc.) and

Master Physics, Photonics & Nanotechnology - PPN

ITE DE BOURG	GOGNE
	pulse shaper devices (stretcher, compressor, shaper using SLM and 4f line,
	dazzler, etc.).

UE 3	Advanced Fiber Photonics
	P. Grelu, F. Smektala, B. Kibler
5 ECTS	This course presents: a) the fundamental physical effects and concepts
52 H	underlying the propagation of short and ultra-short optical pulses in
	dielectric waveguides - b) fibre optic amplifiers and fibre lasers. Dynamics
	of ultrafast fibre lasers. Dissipative optical solitons -c) Supercontinuum
	generation; nonlinear waves and rogue events; multimode fibres,
	transmission of orbital angular momentum, numerical modelling d)
	Glasses and their optical properties Oxide, fluoride and chalcogenide
	glasses, non-linear optical properties, hybrid fibres, new 3D manufacturing
	technologies.

	Nanophysics, Nanophotonics
024	G. Colas des Francs, A. Dereux, B. Cluzel
5 ECTS 60 H	This module deals with the optical and physical properties of micro- and nanostructured solid materials. Guided and localised modes in dielectric layered media, both periodic and non-periodic, are presented in the first part. Miniaturised optical resonators are then discussed and we introduce the notions of strong coupling, weak coupling and the Purcell effect when coupled to single emitters such as semiconductor quantum dots or quantum wells. In the second part we consider metals and the special case of surface plasmons/polaritons. We review the properties of both propagative and localized surface plasmons to manipulate and concentrate the flow of light at nanoscale.
	computing centre, followed by independent personal projects, the students are encouraged to apply the numerical methods studied in order to determine the usual optical and physical properties of micro- nanostructured materials, such as : - the dispersion relations for electromagnetic modes within volumes, surfaces, thin films and multilayers; - the reflectivity, transmission and absorption of systems with planar symmetry; - the light scattering by small metallic and dielectric particles (Mie resonance, Fröhlich resonance, etc.); Through the personal projects carried out, this teaching module reproduces the work expected of a researcher in a laboratory such as: understanding contemporary articles and reference texts, applying the concepts introduced in the articles and texts in projects requiring digital implementation, writing professional quality reports in scientific English.

UE 5	Advanced Microscopies
	A. Bouhelier, E. Lesniewska
2 ECTS 30 H	Advanced microscopy methods (optical, electron and local probe) applied
	to nanoscience and materials science. At the end of the course the student
	will have knowledge of the operating principle of the different types of
	microscope and their respective fields of application. The physical,
	physico-chemical and tribological quantities measurable by the
Contrôle Terminal	microscopy techniques presented will be introduced and the image
	formation and acquisition process will be detailed in this course.
	Knowledge: Select and implement advanced microscopy techniques to
	address a given problem. Interpret image formation and identify sources
	of artefacts in relation to measurement techniques.

UE 6	Nanobiosciences
	P. Senet, A. Nicolai - Transverse Lecture
3 ECTS 40 H	Theory and numerical techniques for modelling nano(bio)systems and
	biomolecules. Mastery of the use of a computer centre, all-atom and
	coarse-grained molecular dynamics techniques, machine learning and
	dimensionality reduction techniques for the interpretation of large
Contrôle Continu Intégral	simulation data sets, theoretical concepts of molecular biophysics and free
	energy landscapes. Carrying out an advanced project on numerical
	simulations of nanosystems.

UE 7	Atomic & Molecular Dynamics
	C. Leroy, G. Guillon - Transverse Lecture:
	This course is in two parts. The first deals with quantum theory, models
	and methods for collisional processes between atoms and molecules. A
	connection between the time-dependent and time-independent
	viewpoints is established. Dynamic observables such as cross section and
2 ECTS	transition probabilities are introduced. Finally, we propose illustrations with
22 H	simulations of realistic systems, at high or low energy. At the end of this
	section, students will be able to model collisional dynamic processes in
	different contexts and simulate them using numerical tools.
	The second part deals with the Dirac equation. After a brief review of the
	basic mathematical tools (Lagrangian, momentum, Hamiltonian, Euler-
	Lagrange equations), we introduce the first attempt to reconcile quantum
	physics and special relativity with the Klein-Gordon equation. We
	demonstrate the limitations of this equation, in particular the problem it
	poses with the introduction of conservation of probability density, which
	leads to negative densities. The Pauli equation is then introduced and its
Contrôle	limitations explained. We then introduce the argued list of conditions that
Terminal	must be met by a quanto-relativistic equation, which naturally leads to the
	proof of the Dirac equation. In particular, we explain that the Dirac equation
	naturally contains the electron spin without the need for additional
	conditions. Finally, we develop the Dirac equation completely,
	transforming it to order v^2/c^2 so that all the terms used in atomic physics
	to study atoms in electric and magnetic fields appear.

UE 8	Tutored Project / Research Project
	Supervisor in the lab/company
	Tutored projects and research projects are designed to build skills based
	on real work situations. In a company, the tutored project involves
3 ECTS	welcoming the learner into the organisation, providing support and
60 H	passing on skills, and assessing the learner. At university, the research
	project is defined around the exploitation of situations, helping to identify
	the skills the link with knowledge. Lasting 60 hours, it aims to enhance the
	student's skills in one of the following themes, for example (not exhaustive):
	- optoelectronic signal analysis
	- laser design, alignment and characterisation
	- nanofabrication in clean rooms
	- instrument interfacing and automation
	- quantum computing

UE 9	Professionnal Setting (work study students)
	Tuteur industriel
	The pofessionnal setting is defined with the participation of the host
6 ECTS 70 H	company. Its purpose is to reinforce the student's skills in a specialist
	technical field at the interface between the training and the technical skills
	to be developed in the company. An examination will be carried out and
	assessed within the company jointly by a representative of the training
	centre and the apprenticeship supervisor.

UE 10	Practicals Session 1 : Fiber Optics
	C. Strutinsky, A. Coillet
2 ECTS 35 H	The aim of this course is to put into practice the fundamental concepts and tools acquired in the field of fibre optics. The practical work proposed targets key experiments in fibre optics, from the production of fibre optic components to their characterisation and implementation in a hardware network.

/ Knowledge: To be able to apply the fundamental knowledge acquired in fibre optics in order to produce and test a fibre optic-based hardware network, to measure it and to analyse the results in relation to the concepts.

UE 11	Practicals Session 2 : Quantum Technologies
	O. Faucher, D. Sugny
	The aim of this course is to put into practice the fundamental concepts and
2 ECTS	tools acquired in the field of quantum technologies. The practical work
35 H	proposed targets key experiments in quantum optics on photon
	entanglement, violation of Bell's inequalities, quantum cryptography and
	quantum erasers.
	/ Knowledge:To be able to apply the fundamental knowledge of quantum
	mechanics and wave optics in order to model and predict the results of a
	quantum technology experiment, carry out measurements and analyse
	the results. Understand the operation and use of a single-photon source.
	Know how to adjust an optical device.

UE 12	Practicals Session 3 : Nanophotonics
	B. Cluzel, A. Coillet, F. Chaussard
2 ECTS 35 H	The aim of this course is to put into practice the fundamental concepts and
	tools acquired in the field of nanophotonics. The practical work proposed
	targets key experiments at the nanometric scale, such as optical tweezers,
	surface plasmon resonances, evanescent field coupling and gallery mode
	resonators, local probe microscopy and confocal microscopy.
	/ Knowledge: To be able to apply the fundamental knowledge of
	nanophotonics in order to model and predict the results of an experiment
	involving optical near-field interactions at the scale of a single object, carry
	out measurements and analyse the results.

Master Physics, Photonics & Nanotechnology - PPN

UE 13	Practicals Session 4 : Ultrafast Optics/Lasers
	E. Hertz, P. Grelu, A. Coillet
	The aim of this course is to put into practice the fundamental concepts and
2 ECTS	tools acquired in the field of ultrafast lasers. The practical work proposed
35 H	will consist of building a femtosecond fibre laser, characterising a train of
	pulses, using laser pulses for applications, and handling a laser beam
	safely in an advanced set-up.
	/ Knowledge : To be able to apply the fundamental knowledge acquired in
	femtosecond sciences in order to model and predict the results of an
	experiment involving ultrafast lasers, to carry out measurements and to
	analyse the results.

UE 14	English/French
	D. Bao
1 ECTS	The aim of this course is to enable French-speaking students to put their
20 H	knowledge of the English language into practice in writing and speaking,
	and non-French-speaking students to acquire a basic understanding of
	the French language and culture.

UE 15	Internship/Alternance
	Supervisor in the lab/company
	Students will use the knowledge they have acquired in a professional
20 ECTS	context to carry out a project that responds to a specific industrial or
5-6 Mois	research problem. In addition to the technical know-how acquired during
	the placement or work-study period, which will be specific to the project
	entrusted to the student, the latter will develop his/her personal
	organisation skills, teamwork and written and oral communication skills as
	part of the assessment of this teaching unit. A professional quality report
	and an oral presentation of the work carried out will be assessed by a panel
	of academic and industrial experts.